Kolmogorov Complexity, Google, and CS70

Of strings, s.

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff. Radius of the earth?

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff. Radius of the earth? Distance to the sun?

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google.

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas?

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas? Google + Stackoverflow.

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas? Google + Stackoverflow.
Plus "how to program"

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas? Google + Stackoverflow.
Plus "how to program" and remembering a bit.

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas? Google + Stackoverflow.
Plus "how to program" and remembering a bit.
Calculus:

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas? Google + Stackoverflow.
Plus "how to program" and remembering a bit.
Calculus: what is minimum you need to know?

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas? Google + Stackoverflow.
Plus "how to program" and remembering a bit.
Calculus: what is minimum you need to know?
Depends on your skills!

Kolmogorov Complexity, Google, and CS70

Of strings, s.
Minimum sized program that prints string s.
What is the minimum I need to know (remember) to know stuff.
Radius of the earth? Distance to the sun? Population of the US?
Acceleration due to gravity on earth?
Google. Plus reference.
Syntax of pandas? Google + Stackoverflow.
Plus "how to program" and remembering a bit.
Calculus: what is minimum you need to know?
Depends on your skills!
If you can reason and understand an argument, one can generate a lot.

Calculus

What is the first half of calculus about?

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point. Slope is rise/run.

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule?

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition. Intuition: composition of two linear functions?

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition. Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x
$$

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition. Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x
$$

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition. Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition. Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is } a b
$$

Multiply slopes!
But...but...

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition. Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is } a b
$$

Multiply slopes!
But...but...

For function slopes of tangent differ at different places.

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is } a b
$$

Multiply slopes!
But...but...

For function slopes of tangent differ at different places.
So, where?

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is } a b
$$

Multiply slopes!
But...but...

For function slopes of tangent differ at different places. So, where? $f(g(x))$

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is } a b .
$$

Multiply slopes!

```
But...but...
```

For function slopes of tangent differ at different places.
So, where? $f(g(x))$
slope of f at $g(x)$ times slope of g at x.

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!

```
But...but...
```

For function slopes of tangent differ at different places.
So, where? $f(g(x))$
slope of f at $g(x)$ times slope of g at x.

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!

```
But...but...
```

For function slopes of tangent differ at different places.
So, where? $f(g(x))$
slope of f at $g(x)$ times slope of g at x.

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Product rule?

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition. Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!

```
But...but...
```

For function slopes of tangent differ at different places. So, where? $f(g(x))$ slope of f at $g(x)$ times slope of g at x .

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Product rule?
Idea: use rise in function value!

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!
But...but...

For function slopes of tangent differ at different places.
So, where? $f(g(x))$
slope of f at $g(x)$ times slope of g at x.

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Product rule?
Idea: use rise in function value!

$$
d(u v)=(u+d u)(v+d v)-u v=u d v+v d u+d u d v \rightarrow u d v+v d u
$$

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!
But...but...

For function slopes of tangent differ at different places.
So, where? $f(g(x))$
slope of f at $g(x)$ times slope of g at x.

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Product rule?
Idea: use rise in function value!

$$
d(u v)=(u+d u)(v+d v)-u v=u d v+v d u+d u d v \rightarrow u d v+v d u
$$

Any concept:

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!

But...but...
For function slopes of tangent differ at different places.
So, where? $f(g(x))$
slope of f at $g(x)$ times slope of g at x.

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Product rule?
Idea: use rise in function value!

$$
d(u v)=(u+d u)(v+d v)-u v=u d v+v d u+d u d v \rightarrow u d v+v d u
$$

Any concept:
A quick argument from basic concept of slope of a tangent line.

Calculus

What is the first half of calculus about?
The slope of a tangent line to a function at a point.
Slope is rise/run. Oh, yes: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Chain rule? Derivative of a function composition.
Intuition: composition of two linear functions?

$$
f(x)=a x, g(x)=b x . f(g(x))=a b x . \text { Slope is ab. }
$$

Multiply slopes!
But...but...

For function slopes of tangent differ at different places.
So, where? $f(g(x))$
slope of f at $g(x)$ times slope of g at x.

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Product rule?
Idea: use rise in function value!

$$
d(u v)=(u+d u)(v+d v)-u v=u d v+v d u+d u d v \rightarrow u d v+v d u
$$

Any concept:
A quick argument from basic concept of slope of a tangent line.
Perhaps.

Arguments, reasoning.

What you know: slope, limit.

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.
Knowing how to reason

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.

Knowing how to reason plus some definition

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.

Knowing how to reason plus some definition gives calculus.

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.
Knowing how to reason plus some definition gives calculus.
Discrete Math: basics are counting, how many, when are two sets the same size.

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.
Knowing how to reason plus some definition gives calculus.
Discrete Math: basics are counting, how many, when are two sets the same size.

Probability:

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.
Knowing how to reason plus some definition gives calculus.
Discrete Math: basics are counting, how many, when are two sets the same size.

Probability: division.

Arguments, reasoning.

What you know: slope, limit.
Plus: definition.
yields calculus.
Minimization, optimization,
Knowing how to program plus some syntax (google) gives the ability to program.
Knowing how to reason plus some definition gives calculus.
Discrete Math: basics are counting, how many, when are two sets the same size.

Probability: division.
...plus reasoning.

Bayes Rule

If someone is nice to you, what is the chance they are a friend?

Bayes Rule

If someone is nice to you, what is the chance they are a friend? People are nice to friends 70% of the time, and to enemies 30% of the time.

Bayes Rule

If someone is nice to you, what is the chance they are a friend?
People are nice to friends 70% of the time, and to enemies 30% of the time.
One third of the people are your friends, two-thirds are enemies.

Bayes Rule

If someone is nice to you, what is the chance they are a friend?
People are nice to friends 70% of the time, and to enemies 30% of the time.
One third of the people are your friends, two-thirds are enemies.
Someone is nice to you, are they your friend?

Bayes Rule

If someone is nice to you, what is the chance they are a friend?
People are nice to friends 70% of the time, and to enemies 30% of the time.
One third of the people are your friends, two-thirds are enemies.
Someone is nice to you, are they your friend?
... Change friend to same politics, and nice to you to opinion on particular issue.

Bayes Rule

If someone is nice to you, what is the chance they are a friend?
People are nice to friends 70% of the time, and to enemies 30% of the time.
One third of the people are your friends, two-thirds are enemies.
Someone is nice to you, are they your friend?
... Change friend to same politics, and nice to you to opinion on particular issue.
... Change friend to find food at place, and nice to is place a watering hole.

Bayes Rule

If someone is nice to you, what is the chance they are a friend?
People are nice to friends 70% of the time, and to enemies 30% of the time.
One third of the people are your friends, two-thirds are enemies.
Someone is nice to you, are they your friend?
... Change friend to same politics, and nice to you to opinion on particular issue.
... Change friend to find food at place, and nice to is place a watering hole.
...searching desperately for Baye's Rule?

Bayes Rule

If someone is nice to you, what is the chance they are a friend?
People are nice to friends 70% of the time, and to enemies 30% of the time.
One third of the people are your friends, two-thirds are enemies.
Someone is nice to you, are they your friend?
... Change friend to same politics, and nice to you to opinion on particular issue.
... Change friend to find food at place, and nice to is place a watering hole.
...searching desperately for Baye's Rule?
I don't remember Bayes rule.

Bayes Rule

If someone is nice to you, what is the chance they are a friend?
People are nice to friends 70% of the time, and to enemies 30% of the time.
One third of the people are your friends, two-thirds are enemies.
Someone is nice to you, are they your friend?
... Change friend to same politics, and nice to you to opinion on particular issue.
... Change friend to find food at place, and nice to is place a watering hole.
...searching desperately for Baye's Rule?
I don't remember Bayes rule.
Can we figure it out? How?

Induction

Induction \equiv every integer has a next one.

Induction \equiv every integer has a next one. Graph theory. Number of edges is sum of degrees.
$\Delta+1$ coloring. Neighbors only take up Δ. Eulerian paths: if you enter you can leave.

Induction \equiv every integer has a next one. Graph theory. Number of edges is sum of degrees.
$\Delta+1$ coloring. Neighbors only take up Δ. Eulerian paths: if you enter you can leave.
Number theory.
A divisor of x and y divides $x-y$.
The remainder is always smaller than the divisor.
\Longrightarrow Euclid's GCD algorithm.
Multiplicative Inverse.
Fermat's theorem from function with inverse is a bijection.

Induction \equiv every integer has a next one. Graph theory.
Number of edges is sum of degrees.
$\Delta+1$ coloring. Neighbors only take up Δ.
Eulerian paths: if you enter you can leave.
Number theory.
A divisor of x and y divides $x-y$.
The remainder is always smaller than the divisor.
\Longrightarrow Euclid's GCD algorithm.
Multiplicative Inverse.
Fermat's theorem from function with inverse is a bijection.

Error Correction.

(Any) Two points determine a line.
(well, and d points determine a degree $d+1$-polynomials.
Cuz, factoring.
Find line by linear equations.
If a couple are wrong, then multiply them by zero, i.e., Error
polynomial.

Induction \equiv every integer has a next one. Graph theory.
Number of edges is sum of degrees.
$\Delta+1$ coloring. Neighbors only take up Δ.
Eulerian paths: if you enter you can leave.
Number theory.
A divisor of x and y divides $x-y$.
The remainder is always smaller than the divisor.
\Longrightarrow Euclid's GCD algorithm.
Multiplicative Inverse.
Fermat's theorem from function with inverse is a bijection.

Error Correction.

(Any) Two points determine a line.
(well, and d points determine a degree $d+1$-polynomials.
Cuz, factoring.
Find line by linear equations.
If a couple are wrong, then multiply them by zero, i.e., Error polynomial.

What's going on, can I state it simply and derive it?

Exercise

Simply state this week in your class.

Exercise

Simply state this week in your class.
What did you teach this week!

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?
Conditional, venn diagram, bayes rule.
What is notation or protocol?

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?
Conditional, venn diagram, bayes rule.
What is notation or protocol? $\operatorname{Pr}[A \mid B]$
What should the student know?

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?
Conditional, venn diagram, bayes rule.
What is notation or protocol? $\operatorname{Pr}[A \mid B]$
What should the student know? Depends.
How should they proceed to learn?

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?
Conditional, venn diagram, bayes rule.
What is notation or protocol? $\operatorname{Pr}[A \mid B]$
What should the student know? Depends.
How should they proceed to learn? Learn to build the theory. How do you assess?

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?
Conditional, venn diagram, bayes rule.
What is notation or protocol? $\operatorname{Pr}[A \mid B]$
What should the student know? Depends.
How should they proceed to learn? Learn to build the theory. How do you assess? Apply bayes rule, understand Venn diagram. What should they remember?

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?
Conditional, venn diagram, bayes rule.
What is notation or protocol? $\operatorname{Pr}[A \mid B]$
What should the student know? Depends.
How should they proceed to learn? Learn to build the theory. How do you assess? Apply bayes rule, understand Venn diagram.
What should they remember?
Bag of marbles eventually gets you everything...

Exercise

Simply state this week in your class.
What did you teach this week!
What are the basics?
Sample spaces, sets, events, probability of events.
What is reasoning?
Conditional, venn diagram, bayes rule.
What is notation or protocol? $\operatorname{Pr}[A \mid B]$
What should the student know? Depends.
How should they proceed to learn? Learn to build the theory.
How do you assess? Apply bayes rule, understand Venn diagram.
What should they remember?
Bag of marbles eventually gets you everything...
...and bayesian updating frame: use evidence!!! (CS188)

